Q.P. Code: 16ME307

R16

Q.P. Code: 16ME307												K10	
Re	g. No:]	
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR													1
(AUTONOMOUS) B.Tech III Year I Semester Regular Examinations Nov/Dec 2019													
	-	J. 1 CC1					_	ERMO				V/DCC 2013	
				Liv				Engine					
Time: 3 hours Max. Marks: 60													0
				(Ans	swer a	ll Five	. Units	s 5 x 1	2 = 60) Mark	(2)		
				(7 111)	, wer a	11 1 1 1 1 1	UNI		00	, 14 1 411	10)		
1	a Discus	s the m	acros	copic a	nd mi	crosco	pic p	oint of	view	of the	rmody	ynamics	6M
	b Differe	entiate l	oetwe	en the	cyclic	proce			cyclic	proces	SS.		6M
•	3371		•		0.11		OI	_	. ,.	C .	0		O.I.
2	a What is	-		-								anciva	6M 6M
	b What do mean by property"? Distinguish between intensive and extensive. UNIT-II											UIVI	
3	a Derive	Steady	Flow	Energ	v Eau	ation							6M
	 a Derive Steady Flow Energy Equation for Turbine b The enthalpy of a steam 3015.6 KJ/Kg enters a nozzle and leaves with an enthalpy 											6M	
		of 2819.8 KJ/Kg. Calculate the velocity of steam at the exit, if the velocity of steam											
at the entry is 50 m/sec.													
4	OR a State first law of thermodynamics. Prove that internal energy is a property of the											6M	
		system.											01/1
	b A turbine operates under steady flow conditions, receiving the steam having										_	6M	
	enthalpy of 2786 KJ/Kg and leaves with an enthalpy of 2513 KJ/Kg. Hea							-					
	the surroundings at the rate of 5.30 KJ/sec. If the rate of steam flows though the turbine is 0.40 Kg/sec. Find the power output of the turbine.											nows though the	
UNIT-III													
5	a What a	re the	limitat	ions o	f the F				odyna	mics?			6M
b A reversible power cycle is used to drive a reversible heat pump cycle. T										ele. The power	6M		
	-						•				_	imp abstracts Q4	
	from the sink at $T4$ and discharges $Q3$ at $T3$. Develop an expression for the rational $Q4/Q1$ in terms of the four temperatures.											sion for the ratio	
	Q -7 /Q1	III terri	113 01 t	iic iou	temp	Cratur	OI	₹					
6	A copper	rod is	of len	gth 1	m and	diam	eter 0	.01m.	One e	end of	the re	od is at 100 OC,	12M
		and the other at 0 0C. The rod is perfectly insulated along its length and the thermal conductivity of copper is 380 W/mK. Calculate the rate of heat transfer along the rod											
		•										•	
and the rate of entropy production due to irreversibility of this heat transfer. UNIT-IV													
7	a What is	s the ga	as equ	ation o	f idea	L	<u> </u>						6M
	b What is	_	-			8							6M
							OF						
8	•			_	-	-				_		OC has internal	12M
				_				-			•	the gas using (a)	

The generalize compressibility chart (b) The ideal gas of equation of state (c) Vander

Walls equation of state.

UNIT-V

9 Write down first and second Tds equations. And derive the expression for the difference in heat capacities Cp and Cv. What does the expression signify?

In an air standard diesel cycle, the compression ratio is 16, and at the begging of isentropic compression, the temperature is 15 0C and the pressure is 0.1 MPa. Heat is added until the temperature at the end of constant pressure process is 1480 0C. Calculate (a) The Cut-off ratio (b) The heat supplied per kg of air(c) The cycle efficiency (d) the mean effective pressure.

*** END ***